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1. Learning outcomes: 

 

After studying this chapter students should be able to understand 

• Whether a given set in a metric space is compact or 
not. 

• Relationship between compactness and continuity. 
• Relation between compactness and sequential 

compactness. 
• Finite intersection property. 
• Relation between compactness and Frechet 

Compactness. 
• Relation between totally bounded sets and sequential 

compact sets. 
•  Lebesgue number.  
•  Application of Lebesgue Covering lemma. 
• Heine – Borel  theorem. 
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2. Introduction:  
In this lesson we shall discuss the notion of compactness in a 
metric space. In first section we shall define compact set and 
we discuss certain theorems which characterize compact sets 
and give a complete description of compact sets in a metric 
space. Next we shall discuss the characteristics of a compact 
sets under continuous map, finite intersection property, and 
relations between compactness, sequential compactness and 
BW-compactness. 
 

Some  Definitions: 

 Cover:  
Consider a nonempty set X. Let  A⊆ X. a collection 𝓤𝓤= {Սα: α∈ Λ} 
of subsets of X is said to be a cover of A if A⊆ ⋃ Ս𝜶𝜶𝜶𝜶∈ 𝜦𝜦  
 

 Subover:  
A sub-collection 𝓤𝓤0  of  𝓤𝓤 is called a sub-cover of 𝓤𝓤 for A if 𝓤𝓤0 is 
also a cover of A. 
 

 Open Cover: In a metric space (𝑿𝑿, 𝒅𝒅), a cover 𝓤𝓤= {Սα: α∈ Λ} of X 
is called an open cover of X if each Սα is open sets of  (𝑿𝑿, 𝒅𝒅). 

 

 3. Compact Metric Space 

 

A metric space (𝑿𝑿, 𝒅𝒅) is said to be compact if for each open cover 𝓤𝓤= 
{Սα: α∈ Λ}  of  𝑿𝑿  (⋃ Ս𝜶𝜶𝜶𝜶∈ 𝜦𝜦  = 𝑿𝑿) , Ǝ a finite subcover 𝓤𝓤0 of 𝓤𝓤 for X . 

i.e. for each open cover 𝓤𝓤= {Սα: α∈ Λ}  of 𝑋𝑋, Ǝ 𝓤𝓤0= {𝑈𝑈𝛼𝛼𝑖𝑖: 𝑖𝑖 =
1.2, … , 𝑛𝑛} such that  ⋃ Ս𝑖𝑖𝑛𝑛

𝑖𝑖=1  = 𝑋𝑋. 
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 Theorem 3.1: Every finite set in a metric space is compact. 

Proof:   Let (𝑋𝑋, 𝑑𝑑) be a metric space and 𝐴𝐴 = {𝑥𝑥𝑖𝑖: 𝑖𝑖 = 1,2, . . , 𝑛𝑛} be a 
finite subset of 𝑋𝑋. 

Let 𝓤𝓤= {Սα: α∈ Λ} be an open cover of 𝐴𝐴. 

Then 𝐴𝐴 ⊆ ⋃ Ս𝜶𝜶𝜶𝜶∈ 𝜦𝜦  

So each 𝑥𝑥𝑖𝑖 ∈  𝑈𝑈𝛼𝛼𝑖𝑖  for some 𝑈𝑈𝛼𝛼𝑖𝑖of the family 𝓤𝓤. 

Therefore 𝐴𝐴 ⊆ (⋃ 𝑈𝑈𝛼𝛼𝑖𝑖)
𝑛𝑛
𝑖𝑖=1  

Hence �𝑈𝑈𝛼𝛼𝑖𝑖: 𝑖𝑖 = 1.2, … , 𝑛𝑛� = 𝒰𝒰0(say) is a finite subcover of 𝓤𝓤 for  𝑨𝑨 
and so 𝑨𝑨 is compact∎ 

 

• Corollary:  Singleton set is compact. 

 

 Theorem 3.2 : Every closed subset of a compact Metric Space is 
compact. 

 

Proof:  Let (𝑋𝑋, 𝑑𝑑) be a compact metric space and A(⊆ X) be closed. Let 
𝓤𝓤= {Սα : α∈ Λ} be an open cover of A in X. 

Therefore  A⊆ ⋃ Ս𝛼𝛼𝛼𝛼∈ 𝛬𝛬 . 

Since A is closed, (X-A) is open in X. 

Then (⋃ Ս𝛼𝛼)𝛼𝛼∈ 𝛬𝛬  ⋃(𝑋𝑋 − 𝐴𝐴) is clearly an open cover of X.  

It is given that  (𝑋𝑋, 𝑑𝑑)is compact. Then that above cover of X has a 
finite sub-cover 𝓤𝓤0 = {𝑈𝑈𝛼𝛼1 , 𝑈𝑈𝛼𝛼2 , … . , 𝑈𝑈𝛼𝛼𝑛𝑛 , (𝑋𝑋 − 𝐴𝐴)} (say). 

Therefore  (⋃ 𝑈𝑈𝛼𝛼𝑖𝑖)
𝑛𝑛
𝑖𝑖=1 ⋃(𝑋𝑋 − 𝐴𝐴) = 𝑋𝑋 
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⇒ (⋃ 𝑈𝑈𝛼𝛼𝑖𝑖) ⊇ A𝑛𝑛
𝑖𝑖=1  

Let  ℱ = {𝑈𝑈𝛼𝛼𝑖𝑖: 𝑖𝑖 = 1,2, . . , 𝑛𝑛} 

Then ℱ is a finite sub-cover of the open cover 𝓤𝓤 for A. 

Hence A is compact∎ 

 

 Theorem 3.3: every compact subset of a metric space is closed. 
 

Proof:  let (𝑋𝑋, 𝑑𝑑)  be a metric space and A be any compact subset of X.  

To show that A is closed we will prove Ac=(X-A) is open in X. 

For, let  y∈ Ac and x∈ A.  then clearly x≠y ⇒ d(x,y)> 0 

Let d(x,y)=rx , then the open sphere 𝑆𝑆𝑟𝑟𝑥𝑥
2

(𝑥𝑥)  𝑎𝑎𝑛𝑛𝑑𝑑 𝑆𝑆𝑟𝑟𝑥𝑥
2

(𝑦𝑦)   are such 

that  𝑆𝑆𝑟𝑟𝑥𝑥
2

(𝑥𝑥) ∩ 𝑆𝑆𝑟𝑟𝑥𝑥
2

(𝑦𝑦) = 𝜙𝜙 

If  𝑧𝑧 ∈ 𝑆𝑆𝑟𝑟𝑥𝑥
2

(𝑥𝑥) ∩ 𝑆𝑆𝑟𝑟𝑥𝑥
2

(𝑦𝑦) , d(z,x)< 𝑟𝑟𝑥𝑥
2

  and  d(z,y)< 𝑟𝑟𝑥𝑥
2

 and by triangle 

inequality  

𝑑𝑑(𝑥𝑥, 𝑦𝑦) ≤  𝑑𝑑(𝑥𝑥, 𝑧𝑧) + 𝑑𝑑(𝑧𝑧, 𝑦𝑦) < 𝑟𝑟𝑥𝑥
2

 +𝑟𝑟𝑥𝑥
2

= 𝑟𝑟𝑥𝑥  

Which contradicts the fact that d(x,y)=rx. 

Now consider the collection 𝓤𝓤={𝑆𝑆𝑟𝑟𝑥𝑥
2

(𝑥𝑥): 𝑥𝑥 ∈ 𝐴𝐴} 

Clearly ⋃ 𝑆𝑆𝑟𝑟𝑥𝑥
2

(𝑥𝑥)𝑥𝑥∈𝑨𝑨 ⊇ 𝐴𝐴 

Therefore 𝓤𝓤 is an open cover of A. 

Since A is compact set, Ǝ a finite subcover 𝓤𝓤0 of 𝓤𝓤 for A . 

Let 𝓤𝓤0={𝑆𝑆𝑟𝑟𝑥𝑥𝑖𝑖
2

(𝑥𝑥𝑖𝑖): 𝑖𝑖 = 1,2, . . , 𝑛𝑛} so that ⋃ 𝑆𝑆𝑟𝑟𝑥𝑥𝑖𝑖
2

𝑛𝑛
𝑖𝑖=1 (𝑥𝑥𝑖𝑖) ⊇ 𝐴𝐴. 
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Let 𝐵𝐵𝑦𝑦 = ⋂ 𝑆𝑆𝑟𝑟𝑥𝑥𝑖𝑖
2

(𝑦𝑦)𝑛𝑛
𝑖𝑖=1 . 

Being finite intersection of open sets 𝐵𝐵𝑦𝑦 is open containing y∈ Ac. 

Again for each 𝑥𝑥𝑖𝑖 ∈ 𝐴𝐴,    𝑆𝑆𝑟𝑟𝑥𝑥𝑖𝑖
2

(𝑥𝑥𝑖𝑖) ∩ 𝑆𝑆𝑟𝑟𝑥𝑥𝑖𝑖
2

(𝑦𝑦) = 𝜙𝜙 

⇒    𝑆𝑆𝑟𝑟𝑥𝑥𝑖𝑖
2

(𝑥𝑥𝑖𝑖) ∩ 𝐵𝐵𝑦𝑦 = 𝜙𝜙      ∀𝑥𝑥𝑖𝑖 

⇒�⋃ 𝑆𝑆𝑟𝑟𝑥𝑥𝑖𝑖
2

𝑛𝑛
𝑖𝑖=1 (𝑥𝑥𝑖𝑖)� ∩  𝐵𝐵𝑦𝑦 = 𝜙𝜙 

⇒𝐴𝐴 ∩ 𝐵𝐵𝑦𝑦 = 𝜙𝜙 

⇒𝐵𝐵𝑦𝑦 ⊆  𝐴𝐴𝑐𝑐  

Since 𝑦𝑦 ∈ 𝐴𝐴𝑐𝑐 is arbitrary, ⋃ 𝐵𝐵𝑦𝑦𝑦𝑦∈𝐴𝐴𝑐𝑐 = 𝐴𝐴𝑐𝑐 

Since arbitrary union of open sets is open, 𝐴𝐴𝑐𝑐 is open in X. 

Hence A is closed∎ 

 

 Corollary : A subset A of a compact metric space is compact if and 
only if A is closed. 

 

 Theorem 3.4: every compact subset 𝐴𝐴 of a metric space (𝑋𝑋, 𝑑𝑑) is 
bounded. 

Proof:  Let  𝐴𝐴(⊆ 𝑋𝑋) be a compact . 

Let us choose an open cover 𝓤𝓤 consisting of open spheres of unit 
radius. 

i.e. 𝓤𝓤={𝑆𝑆1(𝑥𝑥): 𝑥𝑥 ∈ 𝐴𝐴}. 

Now ⋃ 𝑆𝑆1(𝑥𝑥)𝑥𝑥∈𝐴𝐴 ⊇ 𝐴𝐴 
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Since 𝐴𝐴 is compact, 𝓤𝓤 has a finite sub-cover  

𝓤𝓤0={𝑆𝑆1(𝑥𝑥𝑖𝑖): 𝑖𝑖 = 1,2, . . , 𝑛𝑛}. 

Then ⋃ 𝑆𝑆1(𝑥𝑥𝑖𝑖)𝑛𝑛
𝑖𝑖=1 ⊇ 𝐴𝐴 

  𝐿𝐿𝐿𝐿𝐿𝐿 𝑀𝑀 = max {𝑑𝑑�𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗�: 1 ≤ 𝑖𝑖 ≤ 𝑗𝑗 ≤ 𝑛𝑛}  

Let 𝑥𝑥, 𝑦𝑦 ∈ 𝐴𝐴 be any two elements, then Ǝ elements 𝑥𝑥𝑖𝑖 and 𝑥𝑥𝑗𝑗 

Such that  𝑥𝑥 ∈ 𝑆𝑆1(𝑥𝑥𝑖𝑖)  and 𝑦𝑦 ∈ 𝑆𝑆1�𝑥𝑥𝑗𝑗�. 

By triangle inequality 

𝑑𝑑(𝑥𝑥, 𝑦𝑦) ≤ 𝑑𝑑(𝑥𝑥, 𝑥𝑥𝑖𝑖) + 𝑑𝑑�𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗� + 𝑑𝑑�𝑥𝑥𝑗𝑗 , 𝑦𝑦� ≤ 1 + 𝑀𝑀 + 1 = 𝑀𝑀 + 2 

⇒𝐴𝐴 is bounded∎ 

 

 Heine-Borel Theorem: 
          Every closed and bounded subset of  ℝ is compact. 

• Result:   A subset 𝑆𝑆 of ℝ is compact if and only if it is closed and 
bounded. 
 
 4. Compactness and continuity 

In this section we will learn about the nature of a compact set under 
a continuous map. 

 

 Theorem 4.1: Let (𝑋𝑋, 𝑑𝑑𝑥𝑥) 𝑎𝑎𝑛𝑛𝑑𝑑 (𝑌𝑌, 𝑑𝑑𝑦𝑦) be two metric spaces and 
𝑓𝑓: 𝑋𝑋 → 𝑌𝑌 be continuous. Then the continuous image of a 
compact subset 𝐴𝐴 of 𝑋𝑋 is compact in 𝑌𝑌 . 
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Proof:    Let 𝐴𝐴 be a compact subset of 𝑋𝑋 and 𝓤𝓤={𝑉𝑉𝛼𝛼: 𝛼𝛼 ∈ 𝛬𝛬} be an 
open cover of 𝑓𝑓(𝐴𝐴). 

Therefore 𝑓𝑓(𝐴𝐴) ⊆ ⋃ 𝑉𝑉𝛼𝛼𝛼𝛼∈𝛬𝛬  

⇒𝐴𝐴 ⊆ 𝑓𝑓−1(⋃ 𝑉𝑉𝛼𝛼𝛼𝛼∈𝛬𝛬 ) 

⇒𝐴𝐴 ⊆ ⋃ 𝑓𝑓−1(𝑉𝑉𝛼𝛼)𝛼𝛼∈𝛬𝛬  

Since 𝑓𝑓 is continuous and each 𝑉𝑉𝛼𝛼 is open in 𝑌𝑌,  𝑓𝑓−1(𝑉𝑉𝛼𝛼) are also open 
in 𝑋𝑋. 

Hence 𝔉𝔉 = {𝑓𝑓−1(𝑉𝑉𝛼𝛼): 𝛼𝛼 ∈ 𝛬𝛬} is an open cover of 𝐴𝐴. 

Since 𝐴𝐴 is compact, Ǝ a finite sub-cover 

𝔉𝔉0 = {𝑓𝑓−1(𝑉𝑉𝛼𝛼𝑖𝑖): 𝑖𝑖 = 1,2, . . , 𝑛𝑛}  . 

Therefore     𝐴𝐴 ⊆ ⋃ 𝑓𝑓−1(𝑉𝑉𝛼𝛼𝑖𝑖)
𝑛𝑛
𝑖𝑖=1  

⇒ 𝐴𝐴 ⊆ 𝑓𝑓−1(⋃ 𝑉𝑉𝛼𝛼𝑖𝑖)
𝑛𝑛
𝑖𝑖=1  

⇒ 𝑓𝑓(𝐴𝐴) ⊆  ⋃ 𝑉𝑉𝛼𝛼𝑖𝑖
𝑛𝑛
𝑖𝑖=1  

Hence 𝑓𝑓(𝐴𝐴) is compact∎ 

 Note: The converse of the above theorem is not necessarily 
true. That is, if a function maps compact sets into compact sets, 
it does not always mean that the function is continuous. 

Counter example: 

Consider the Dirichlet function 𝑓𝑓: ℝ → ℝ , defined by 

𝑓𝑓(𝑥𝑥) = �1, 𝑖𝑖𝑓𝑓 𝑥𝑥 ∈ ℚ
0, 𝑖𝑖𝑓𝑓 𝑥𝑥 ∉ ℚ 

Clearly 𝑓𝑓 is not continuous map. But it maps every compact subset 
of ℝ to a compact sub-set {0,1}(as it is finite subset) of ℝ(co-
domain). 
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• Corollary: 
Let (𝑋𝑋, 𝑑𝑑𝑥𝑥) 𝑎𝑎𝑎𝑎𝑑𝑑 (𝑌𝑌, 𝑑𝑑𝑦𝑦) be two metric spaces and 𝑓𝑓: 𝑋𝑋 → 𝑌𝑌 be 
continuous. If 𝐴𝐴(⊆ 𝑋𝑋) be a compact then 𝑓𝑓(𝐴𝐴) is closed and 
bounded in𝑌𝑌. 

• Corollary: 
Let (𝑋𝑋, 𝑑𝑑𝑥𝑥) 𝑎𝑎𝑎𝑎𝑑𝑑 (𝑌𝑌, 𝑑𝑑𝑦𝑦) be two metric spaces and 
𝑋𝑋 𝑏𝑏𝑏𝑏 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑎𝑎𝑐𝑐𝑐𝑐. 𝐿𝐿𝑏𝑏𝑐𝑐 𝑓𝑓: 𝑋𝑋 → 𝑌𝑌 be continuous. If 𝐴𝐴(⊆ 𝑋𝑋) be closed , 
then 𝑓𝑓(𝐴𝐴) is closed and bounded in𝑌𝑌. 
 
 

 
 

 5. Finite Intersection Property 

A family 𝓕𝓕 of subsets in a metric space (𝑋𝑋, 𝑑𝑑) is said to have Finite 
Intersection Property  (F.I.P) if every finite subfamily 𝓕𝓕0 of 𝓕𝓕 has 
nonempty intersection. 

i.e. if 𝓕𝓕={𝐹𝐹𝛼𝛼: 𝛼𝛼 ∈ 𝛬𝛬} be any family of subsets of 𝑋𝑋. 

Then for every finite subfamily 𝓕𝓕0={Fαi: i = 1,2, . . , n} ⋂ 𝑭𝑭𝜶𝜶𝒊𝒊 ≠ ϕ𝒏𝒏
i=1 . 

 

e.g.  The family{ [−𝒏𝒏, 𝒏𝒏]: 𝒏𝒏 ∈ } of closed intervals of ℝ has Finite 
Intersection Property. 

 

 Theorem 5.1:  A metric space (𝑋𝑋, 𝑑𝑑) is compact If and only if for 
every collection of closed subsets 𝓕𝓕={𝐹𝐹𝛼𝛼: 𝛼𝛼 ∈ 𝛬𝛬} in 𝑋𝑋 having 
Finite Intersection Property, the intersection ⋂ 𝐹𝐹𝛼𝛼𝛼𝛼∈𝛬𝛬  of the 
entire collection is nonempty. 
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Proof:  Let (𝑋𝑋, 𝑑𝑑) be compact metric space and 𝓕𝓕={𝐹𝐹𝛼𝛼: 𝛼𝛼 ∈ 𝛬𝛬} be any 
family of closed sets in (𝑋𝑋, 𝑑𝑑) with F.I.P 

If possible let ⋂ 𝐹𝐹𝛼𝛼𝛼𝛼∈𝛬𝛬 = 𝜙𝜙. 

Now  ⋂ 𝐹𝐹𝛼𝛼𝛼𝛼∈𝛬𝛬 = 𝜙𝜙 ⇒ (⋂ 𝐹𝐹𝛼𝛼𝛼𝛼∈𝛬𝛬 )c = 𝑋𝑋 

∴ ⋃ Fα
c

αϵΛ = 𝑋𝑋. 

Since each 𝐹𝐹𝛼𝛼 is closed, complement of each 𝐹𝐹𝛼𝛼 is open in 𝑋𝑋. 

i.e. {Fα
c : 𝛼𝛼 ∈ 𝛬𝛬} are family of open sets in X. 

∴ 𝓤𝓤={Fα
c : 𝛼𝛼 ∈ 𝛬𝛬} is an open cover of X. 

Since X is supposed to be compact Ǝ a finite subcover  
0={𝐹𝐹𝛼𝛼𝑖𝑖

𝑐𝑐 :i=1,2,..,n} of 𝓤𝓤 for 𝑋𝑋. 

i.e. ⋃ 𝐹𝐹𝛼𝛼𝑖𝑖
𝑐𝑐𝑛𝑛

𝑖𝑖=1 = 𝑋𝑋   

⇒(⋃ 𝐹𝐹𝛼𝛼𝑖𝑖
𝑐𝑐𝑛𝑛

𝑖𝑖=1 )𝑐𝑐 = 𝜙𝜙 

⇒⋂ 𝐹𝐹𝛼𝛼𝑖𝑖 = 𝜙𝜙𝑛𝑛
𝑖𝑖=1  

Now 𝐹𝐹𝛼𝛼𝑖𝑖 ’s are closed sets and ⋂ 𝐹𝐹𝛼𝛼𝑖𝑖 = 𝜙𝜙𝑛𝑛
𝑖𝑖=1  contradicts the fact that 𝓕𝓕 

has F.I.P. 

Hence   ⋂ 𝐹𝐹𝛼𝛼𝛼𝛼∈𝛬𝛬 ≠ 𝜙𝜙. 

 

Conversely suppose every family of closed sets in (𝑋𝑋, 𝑑𝑑) with F.I.P 
has nonempty intersection. We have to prove that  𝑋𝑋 is compact. 

It is quite similar to prove that for every family of closed sets in 𝑋𝑋 
with empty intersection does not have F.I.P. ⇒ 𝑋𝑋 is compact. 

For let 𝓤𝓤={𝐺𝐺𝛼𝛼: 𝛼𝛼 ∈ 𝛬𝛬}be an open cover of 𝑋𝑋. 

Then ⋃ 𝐺𝐺𝛼𝛼𝛼𝛼∈𝛬𝛬 = 𝑋𝑋  and taking complements we get 
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� 𝐺𝐺𝛼𝛼
𝑐𝑐

𝛼𝛼∈𝛬𝛬

= 𝜙𝜙 

Since 𝐺𝐺𝛼𝛼’s are open , 𝐺𝐺𝛼𝛼
𝑐𝑐’s are closed in 𝑋𝑋. 

Then {𝐺𝐺𝛼𝛼
𝑐𝑐: 𝛼𝛼 ∈ 𝛬𝛬} is a family of closed sets in 𝑋𝑋 whose intersection is 

empty. 

Then by hypothesis this family does not have F.I.P. and so Ǝ a finite 
subfamily say �𝐺𝐺𝛼𝛼𝑖𝑖

𝑐𝑐 : 𝑖𝑖 = 1,2, . . , 𝑎𝑎� such that ⋂ 𝐺𝐺𝛼𝛼𝑖𝑖
𝑐𝑐𝑛𝑛

𝑖𝑖=1 = 𝜙𝜙 

⇒(⋂ 𝐺𝐺𝛼𝛼𝑖𝑖
𝑐𝑐𝑛𝑛

𝑖𝑖=1 )𝑐𝑐 =  𝑋𝑋 

⇒⋃ 𝐺𝐺𝛼𝛼𝑖𝑖 =𝑛𝑛
𝑖𝑖=1 𝑋𝑋 

Hence �𝐺𝐺𝛼𝛼𝑖𝑖: 𝑖𝑖 = 1,2, . . , 𝑎𝑎� = 𝒰𝒰0(𝑠𝑠𝑎𝑎𝑠𝑠)  is a finite subcover of the open 
cover 𝓤𝓤 for 𝑋𝑋. 

Hence  𝑋𝑋  

Is 𝑋𝑋 compact∎ 

 

• Definition (relatively compact): Let (𝑋𝑋, 𝑑𝑑) be a metric space. A 
subset 𝑨𝑨 is said to be relatively compact if �̅�𝐴 is compact in𝑿𝑿. 
 

• Definition(ɛ- net): Let 𝐴𝐴 be a subset of a metric space (𝑋𝑋, 𝑑𝑑). Let 
ɛ > 0 be a real number. Then a non-empty subset 𝐵𝐵 of 𝐴𝐴 is said 
to be an  ɛ − 𝑎𝑎𝑏𝑏𝑐𝑐 for set 𝐴𝐴 if for any 𝑎𝑎 ∈ 𝐴𝐴, Ǝ a point 𝑥𝑥 ∈ 𝐵𝐵 such 
that 𝑎𝑎 ∈ 𝑆𝑆ɛ(𝑥𝑥). 
 

• Definition(Totally Bounded Set/ Pre-compact): A non-empty 
subset 𝑨𝑨of a metric space (𝑋𝑋, 𝑑𝑑) is said to be totally bounded if 
for any ɛ > 0 Ǝ a finite ɛ − 𝑎𝑎𝑏𝑏𝑐𝑐 for 𝐴𝐴. 
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• Definition(Lebesgue Number): Let 𝓤𝓤= {Սα : α∈ Λ} be an open 
cover of  metric space (𝑋𝑋, 𝑑𝑑). A real number λ> 0is called a 
Lebesgue Number for the open cover 𝓤𝓤= {Սα : α∈ Λ} if for each 
subset 𝐴𝐴 of 𝑋𝑋 with 𝑑𝑑𝑖𝑖𝑎𝑎𝑐𝑐(𝐴𝐴) < 𝜆𝜆, there is at least one Սα which 
contains 𝐴𝐴. 
 

 Note: If λ is a Lebesgue number of an open cover, then any 𝛿𝛿 >
𝜆𝜆 is also a Lebesgue Number for that open cover.  

 

 Theorem 5.2:  In a metric space (𝑋𝑋, 𝑑𝑑) , a subset 𝐴𝐴 of 𝑋𝑋 is 
compact implies it is totally bounded. 

 

Proof:  Let   (𝑋𝑋, 𝑑𝑑) be a metric space and 𝐴𝐴(⊆ 𝑋𝑋) be compact. 

Then clearly for any ɛ> 0,  𝒰𝒰 = {Sɛ(x): x ∈ A} is an open cover of 𝑨𝑨. 
By our hypothesis 𝐴𝐴is compact. Then ∃ a finite sub-cover say 𝒰𝒰0 =
{𝑆𝑆ɛ(𝑥𝑥𝑖𝑖): 𝑥𝑥𝑖𝑖 ∈ 𝐴𝐴, 𝑖𝑖 = 1,2, . . , 𝑎𝑎}, then 

𝐴𝐴 ⊆ � 𝑆𝑆ɛ

𝑛𝑛

𝑖𝑖=1
(𝑥𝑥𝑖𝑖) 

Let us consider the set {𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛} = 𝐵𝐵 (𝑠𝑠𝑎𝑎𝑠𝑠). Then 𝐵𝐵 is clearly a 
finite ɛ − 𝑎𝑎𝑏𝑏𝑐𝑐 for 𝐴𝐴. Hence 𝐴𝐴 is totally bounded∎ 

 

 Theorem 5.3:   In a metric space (𝑋𝑋, 𝑑𝑑) , if a subset 𝐴𝐴 of 𝑋𝑋 is 
totally bounded then it is bounded. 

 

Proof: Let   (𝑋𝑋, 𝑑𝑑) be a metric space and 𝐴𝐴(⊆ 𝑋𝑋) be totally bounded. 
Then for any ɛ > 0 Ǝ a finite ɛ − 𝑎𝑎𝑏𝑏𝑐𝑐 for 𝐴𝐴. Choose ɛ=1(>0) , ∃ 
finitely many points 𝑥𝑥1, 𝑥𝑥2, . . , 𝑥𝑥𝑛𝑛 in 𝐴𝐴 such that   
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𝐴𝐴 ⊆ ⋃ 𝑆𝑆1
𝑛𝑛
𝑖𝑖=1 (𝑥𝑥𝑖𝑖). Let 𝑀𝑀 = max

1≤𝑖𝑖,𝑗𝑗≤𝑛𝑛
{𝑑𝑑�𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗�}. Then for any 𝑥𝑥, 𝑦𝑦 ∈

𝐴𝐴 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑥𝑥 ≠ y  ∃ 1 ≤ 𝑤𝑤, 𝑗𝑗 ≤ 𝑛𝑛 (𝑤𝑤 ≠ j) such that 𝑥𝑥 ∈ 𝑆𝑆1(𝑥𝑥𝑖𝑖) and ∈ 𝑆𝑆1(𝑥𝑥𝑗𝑗) 
. 

Thus from triangle inequality 

𝑑𝑑(𝑥𝑥, 𝑦𝑦) ≤ 𝑑𝑑(𝑥𝑥, 𝑥𝑥𝑖𝑖) + 𝑑𝑑�𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗� + 𝑑𝑑�𝑥𝑥𝑗𝑗 , 𝑦𝑦� < 1 + 𝑀𝑀 + 1 

⇒ 𝑑𝑑(𝑥𝑥, 𝑦𝑦) < 2 + 𝑀𝑀 

This shows that 𝑑𝑑𝑤𝑤𝑑𝑑𝑑𝑑(𝐴𝐴) < 2 + 𝑀𝑀. Hence 𝑨𝑨 is bounded∎ 

 

 Note:  The converse of the above theorem is not true in general. 
For example we discuss the following: 
 

Consider the 𝑙𝑙2 space consisting of real sequences {𝑥𝑥𝑛𝑛} such that 
∑ 𝑥𝑥𝑖𝑖

2∞
𝑖𝑖=1 < ∞ and the metric is defined by 𝑑𝑑(𝑥𝑥, 𝑦𝑦) = �∑ (𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖)2∞

𝑖𝑖=1 ,     
 𝑥𝑥 = {𝑥𝑥𝑛𝑛} , 𝑦𝑦 = {𝑦𝑦𝑛𝑛} ∈ 𝑙𝑙2. 

Further we consider the subset  

𝐴𝐴 = �𝑥𝑥 = {𝑥𝑥𝑛𝑛} ∈ 𝑙𝑙2: � 𝑥𝑥𝑖𝑖
2

∞

𝑖𝑖=1

= 1� 

Or it can be defined as  

𝐴𝐴 = {𝑥𝑥 = {𝑥𝑥𝑛𝑛} ∈ 𝑙𝑙2: 𝑑𝑑(𝑥𝑥, 𝟎𝟎) = 1}, 

where 0={0,0,0, . . ,0} ∈ l2. 

For any two 𝑥𝑥 = {𝑥𝑥𝑛𝑛} , 𝑦𝑦 = {𝑦𝑦𝑛𝑛} ∈ 𝑙𝑙2  

𝑑𝑑(𝑥𝑥, 𝑦𝑦) ≤ 𝑑𝑑(𝑥𝑥, 𝟎𝟎) + 𝑑𝑑(𝟎𝟎, 𝑦𝑦) = 1 + 1 = 2 

This shows that 𝐴𝐴 is bounded. 
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Consider the set 𝐵𝐵 = {𝑒𝑒1, 𝑒𝑒2, 𝑒𝑒3, … … … } of points of 𝐴𝐴, where 𝑒𝑒𝑖𝑖 =
(0,0,0, … , 1𝑖𝑖′𝑡𝑡ℎ 𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑡𝑡𝑖𝑖𝑝𝑝𝑛𝑛, 0,0, … … … … ). Then for any  𝑑𝑑, 𝑛𝑛 ∈
   𝑤𝑤𝑤𝑤𝑤𝑤ℎ  𝑑𝑑 ≠ 𝑛𝑛,  𝑑𝑑(𝑒𝑒𝑚𝑚, 𝑒𝑒𝑛𝑛) = √2. Observe that ∄ any finite 1

√2
−  𝑛𝑛𝑒𝑒𝑤𝑤 

for the set 𝐴𝐴. 

To show, if possible let ∃ a finite 1
√2

−  𝑛𝑛𝑒𝑒𝑤𝑤 𝐵𝐵 = {𝑑𝑑1, 𝑑𝑑2, … , 𝑑𝑑𝑛𝑛} for the 
set 𝐴𝐴. Then at least one 𝑆𝑆 1

√2
(𝑑𝑑𝑘𝑘) contains infinitely many points of 𝐴𝐴. 

Let  𝑒𝑒𝑖𝑖 , 𝑒𝑒𝑗𝑗 ∈  𝑆𝑆 1
√2

(𝑑𝑑𝑘𝑘). By triangle inequality  

√2 = 𝑑𝑑(𝑒𝑒𝑚𝑚, 𝑒𝑒𝑛𝑛) ≤ 𝑑𝑑(𝑒𝑒𝑚𝑚, 𝑑𝑑𝑘𝑘) + 𝑑𝑑(𝑑𝑑𝑘𝑘 , 𝑒𝑒𝑛𝑛) < 1
√2

+ 1
√2

= √2  

which is a contradiction. So there does not exists any finite 1
√2

−  𝑛𝑛𝑒𝑒𝑤𝑤 
for the set  𝐴𝐴. Hence 𝐴𝐴 is not totally bounded. 

 

 Note: In  a  metric space any subset of a totally bounded set is 
totally bounded.  

 

 6. Sequential and Frechet compactness 

 

Definition: A metric space (𝑋𝑋, 𝑑𝑑) is said to be sequentially compact if 
every sequence {𝑥𝑥𝑛𝑛}of points of 𝑋𝑋 has a convergent subsequence. 

Definition: A metric space (𝑋𝑋, 𝑑𝑑) is said to be Frechet compact or BW 
–compact if every infinite subset of 𝑋𝑋 has a limit point in 𝑋𝑋 

 Theorem 6.1:  A metric space(𝑋𝑋, 𝑑𝑑) is sequentially compact if 
and only if it is BW- compact. 
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Proof:  Let (𝑋𝑋, 𝑑𝑑)  be sequentially compact. Also let 𝐴𝐴 be any infinite 
subset of 𝑋𝑋. Consider a sequence {𝑥𝑥𝑛𝑛} of points of 𝐴𝐴. Since 𝑋𝑋 is 
sequentially compact, {𝑥𝑥𝑛𝑛} has a convergent subsequence  {𝑥𝑥𝑛𝑛𝑘𝑘} 
which converges to some 𝑥𝑥 ∈ 𝑋𝑋. 

i.e. lim
𝑘𝑘→∞

𝑥𝑥𝑛𝑛𝑘𝑘 = 𝑥𝑥. 

So for ɛ > 0 ∃ 𝑘𝑘0 ∈   for which the open sphere 𝑆𝑆ɛ(𝑥𝑥) contains all 
𝑥𝑥𝑛𝑛𝑘𝑘  for all  𝑘𝑘 ≥ 𝑘𝑘0. 

i.e.  𝑥𝑥𝑛𝑛𝑘𝑘 ∈ 𝑆𝑆ɛ(𝑥𝑥) ∀ 𝑘𝑘 ≥ 𝑘𝑘0.    

Therefore 𝑥𝑥 is a limit point of 𝐴𝐴. 

Hence (𝑋𝑋, 𝑑𝑑)  is BW- compact. 

 

Conversely, let (𝑋𝑋, 𝑑𝑑)  be BW-compact. Let {𝑥𝑥𝑛𝑛}be an arbitrary 
sequence in 𝑋𝑋and suppose  𝐴𝐴 = {𝑥𝑥𝑛𝑛: 𝑛𝑛 ∈ }. Then 𝐴𝐴 is an infinite set 
in 𝑋𝑋. 

If the range of the sequence is finite set, then a value is repeatedly 
occurs infinite times and then the sequence contains a constant 
subsequence which is obviously convergent. Hence (𝑋𝑋, 𝑑𝑑)  is 
sequentially compact. 

If the range set of the sequence be infinite, then that set is an infinite 
set. Therefore it has a limit point in 𝑋𝑋 say 𝑥𝑥 (since (𝑋𝑋, 𝑑𝑑)  is BW-
compact by hypothesis). 

Since 𝑥𝑥 is a limit point, for ɛ=1(>0)   𝑆𝑆1(𝑥𝑥) ∩ 𝐴𝐴 is infinite. Choose an 
element  𝑥𝑥𝑛𝑛1 ∈   𝑆𝑆1(𝑥𝑥) ∩ 𝐴𝐴  

For  𝑛𝑛2 > 𝑛𝑛1 𝑑𝑑𝑛𝑛𝑑𝑑 ɛ = 1
2
 , choose  𝑥𝑥𝑛𝑛2 ∈   𝑆𝑆1

2
(𝑥𝑥) ∩ 𝐴𝐴 

…………….. 
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Proceeding in this way we get a subsequence {𝑥𝑥𝑛𝑛𝑘𝑘: 𝑛𝑛1 < 𝑛𝑛2 <
𝑛𝑛3, … . . } of {𝑥𝑥𝑛𝑛}such that 𝑑𝑑(𝑥𝑥𝑛𝑛𝑘𝑘 , 𝑥𝑥) < 1

𝑘𝑘
 for each  𝑘𝑘 ∈  . This shows 

that the subsequence {𝑥𝑥𝑛𝑛𝑘𝑘} converges to 𝑥𝑥. Hence (𝑋𝑋, 𝑑𝑑) is 
sequentially compact∎ 

 

 Lemma (Lebesgue Covering Lemma): 

Every open cover of a sequentially compact metric space (𝑋𝑋, 𝑑𝑑)has a 
Lebesgue number. 

 

Proof : Let 𝓤𝓤= {Սα : α∈ Λ} be any open cover of 𝑋𝑋. Assume that it has 
no Lebesgue number. Then for each 𝑛𝑛 ∈ , ∃ 𝑥𝑥𝑛𝑛 ∈ 𝑋𝑋 such that 
𝑆𝑆1

𝑛𝑛
(𝑥𝑥𝑛𝑛)is not contained in any member Սα of 𝓤𝓤. Since 𝑋𝑋 is 

sequentially compact, the sequence {𝑥𝑥𝑛𝑛}has a convergent 
subsequence�𝑥𝑥𝑛𝑛𝑘𝑘: 𝑛𝑛1 < 𝑛𝑛2 < ⋯ � converges to some point 𝑥𝑥 ∈ 𝑋𝑋. 

i.e. lim
𝑛𝑛→∞

𝑥𝑥𝑛𝑛𝑘𝑘 = 𝑥𝑥 

 Since 𝓤𝓤= {Սα : α∈ Λ}is an open cover of 𝑋𝑋, then ∃ one member 𝑈𝑈𝛽𝛽  of 
𝓤𝓤 such that 𝑥𝑥 ∈ 𝑈𝑈𝛽𝛽. As 𝑈𝑈𝛽𝛽is open, we can choose ɛ > 0 such 
that  𝑈𝑈𝛽𝛽 ⊇ 𝑆𝑆2ɛ(𝑥𝑥). Now 𝑆𝑆ɛ(𝑥𝑥) contains all but finitely many terms of 
the subsequence {𝑥𝑥𝑛𝑛𝑘𝑘}.In particular ∃ 𝑑𝑑 ∈  𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑑𝑑 > 1

ɛ
 such that  

𝑥𝑥𝑚𝑚 ∈ 𝑆𝑆ɛ(𝑥𝑥) . Now let 𝑦𝑦 ∈ 𝑆𝑆ɛ(𝑥𝑥𝑚𝑚) ⇒ 𝑑𝑑(𝑦𝑦, 𝑥𝑥𝑚𝑚) < ɛ ⇒ 𝑑𝑑(𝑦𝑦, 𝑥𝑥) ≤
𝑑𝑑(𝑦𝑦, 𝑥𝑥𝑚𝑚) + 𝑑𝑑(𝑥𝑥𝑚𝑚, 𝑥𝑥) < ɛ + ɛ = 2ɛ 

⇒ y ∈ 𝑆𝑆2ɛ(𝑥𝑥) ⇒ 𝑆𝑆ɛ(𝑥𝑥𝑚𝑚) ⊆ 𝑆𝑆2ɛ(𝑥𝑥). 

 Thus  𝑆𝑆 1
𝑚𝑚

(𝑥𝑥𝑚𝑚) ⊆ 𝑆𝑆ɛ(𝑥𝑥𝑚𝑚) ⊆ 𝑆𝑆2ɛ(𝑥𝑥) ⊆   𝑈𝑈𝛽𝛽. This contradicts the fact 

that 𝑆𝑆 1
𝑚𝑚

(𝑥𝑥𝑚𝑚) is not contained in any member of 𝓤𝓤. Hence (𝑋𝑋, 𝑑𝑑)has a 

Lebesgue number∎ 
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 Theorem 6.2 :  A metric space(𝑋𝑋, 𝑑𝑑) is compact ⟺ (𝑋𝑋, 𝑑𝑑) is 
sequentially compact. 

 

Proof: Let (𝑋𝑋, 𝑑𝑑) be compact and 𝐴𝐴 is an infinite subset of 𝑋𝑋 which 
has no limit point in 𝑋𝑋. So 𝐴𝐴 is closed in 𝑋𝑋. Then for each 𝑥𝑥 ∈
𝐴𝐴, 𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎  ɛ𝑥𝑥 > 0 such that 𝑆𝑆ɛ𝑥𝑥(𝑥𝑥) ∩ 𝐴𝐴 = {𝑥𝑥}. Otherwise if there 
exists other points in 𝑆𝑆ɛ𝑥𝑥(𝑥𝑥) ∩ 𝐴𝐴 other than 𝑥𝑥, 𝑥𝑥 would be a limit 
point of 𝐴𝐴. 

Clearly  �⋃ 𝑆𝑆ɛ𝑥𝑥(𝑥𝑥)𝑥𝑥∈𝐴𝐴 � ∪ (𝑋𝑋 − 𝐴𝐴) is an open cover of 𝑋𝑋 which admits 
no finite subcover. This contradicts our hypothesis (𝑋𝑋, 𝑑𝑑) is 
compact. Hence 𝐴𝐴 must have a limit point in 𝑋𝑋. Since 𝐴𝐴 is an 
arbitrary infinite subset of 𝑋𝑋 , has a limit point in 𝑋𝑋 implies (𝑋𝑋, 𝑑𝑑) is 
BW-compact and hence by previous theorem it is sequentially 
compact. 

 

Conversely , suppose that (𝑋𝑋, 𝑑𝑑) be sequentially compact. Also let 
𝓤𝓤= {Սα : α∈ Λ} be an open cover of 𝑋𝑋. Since (𝑋𝑋, 𝑑𝑑) is sequentially 
compact therefore by Lebesgue Covering lemma  

Has a Lebesgue number say 𝛿𝛿 > 0. Also (𝑋𝑋, 𝑑𝑑)being sequentially 
compact is totally bounded and so it has a finite  𝛿𝛿

 3
− 𝑎𝑎𝑒𝑒𝑡𝑡, say 

{𝑥𝑥1, 𝑥𝑥2, … . , 𝑥𝑥𝑛𝑛}. 

Then 𝑋𝑋 = ⋃ 𝑆𝑆𝛿𝛿
3
(𝑥𝑥𝑖𝑖)𝑛𝑛

𝑖𝑖=1  



 

18 
 

Now for each 𝑖𝑖, 1 ≤ 𝑖𝑖 ≤ 𝑎𝑎 we have 𝑑𝑑𝑖𝑖𝑎𝑎𝑑𝑑(𝑆𝑆𝛿𝛿
3
(𝑥𝑥𝑖𝑖)) ≤ 2𝛿𝛿

3
< 𝛿𝛿, so by 

definition of Lebesgue number there exists at least one 𝑈𝑈𝛼𝛼𝑖𝑖  such that 
𝑆𝑆𝛿𝛿

3
(𝑥𝑥𝑖𝑖) ⊆ 𝑈𝑈𝛼𝛼𝑖𝑖 ,   𝑖𝑖 = 1,2, . . , 𝑎𝑎 

⇒⋃ 𝑆𝑆𝛿𝛿
3
(𝑥𝑥𝑖𝑖)𝑛𝑛

𝑖𝑖=1 ⊆ ⋃ 𝑈𝑈𝛼𝛼𝑖𝑖
𝑛𝑛
𝑖𝑖=1  

⇒ 𝑋𝑋 ⊆ ⋃ 𝑈𝑈𝛼𝛼𝑖𝑖
𝑛𝑛
𝑖𝑖=1  

Hence {𝑈𝑈𝛼𝛼𝑖𝑖: 𝑖𝑖 = 1,2, . . , 𝑎𝑎} is a finite subcover of 𝓤𝓤= {Սα : α∈ Λ} for 𝑋𝑋 
and so (𝑋𝑋, 𝑑𝑑) is compact∎ 

 

 Theorem 6.3: A subset 𝐴𝐴 of a metric space (𝑋𝑋, 𝑑𝑑) is totally 
bounded if and only if every sequence in 𝐴𝐴 has a Cauchy 
subsequence. 

 

Proof:   First let 𝐴𝐴(⊆ 𝑋𝑋)be totally bounded and {𝑥𝑥𝑛𝑛} be a sequence 
in 𝐴𝐴. By total boundedness of 𝐴𝐴, ∃ a finite 1-𝑎𝑎𝑒𝑒𝑡𝑡 which covers 𝐴𝐴. 
Then at least one of these open balls must contain infinite number of 
terms of the sequence{𝑥𝑥𝑛𝑛}. Let 𝐵𝐵1be that open ball. Choose 𝑥𝑥𝑘𝑘1 ∈ 𝐵𝐵1 
for some 𝑘𝑘1 ∈ . Being a subset of 𝑨𝑨 which is totally bounded set, 
𝐵𝐵1is also totally bounded. Hence 𝐵𝐵1 can also be covered by a finite 
1
2

− 𝑎𝑎𝑒𝑒𝑡𝑡, at least one of which contains infinite number of terms of 
the sequence {𝑥𝑥𝑛𝑛}. Let 𝐵𝐵2 be that open ball. Choose 𝑘𝑘2 ∈  such that 
𝑘𝑘2 > 𝑘𝑘1 and 𝑥𝑥𝑘𝑘2 ∈ 𝐵𝐵2. Proceeding in this way we have for each 𝑎𝑎 ∈

 open balls 𝐵𝐵𝑛𝑛(⊆ 𝐵𝐵𝑛𝑛−1 ⊆ 𝐵𝐵𝑛𝑛−2 ⊆ ⋯ ⊆ 𝐵𝐵2 ⊆ 𝐵𝐵1) if radius 1
𝑛𝑛

  such 
that 𝑥𝑥𝑘𝑘𝑛𝑛 ∈ 𝐵𝐵𝑛𝑛  𝑤𝑤𝑖𝑖𝑡𝑡ℎ  𝑘𝑘1 < 𝑘𝑘2 < ⋯ < 𝑘𝑘𝑛𝑛. Clearly {𝑥𝑥𝑘𝑘𝑛𝑛}is a Cauchy 
subsequence of the sequence {𝑥𝑥𝑛𝑛} 
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In fact ∀ 𝑖𝑖, 𝑗𝑗 ≥ 𝑎𝑎,    𝑥𝑥𝑘𝑘𝑖𝑖 , 𝑥𝑥𝑘𝑘𝑗𝑗 ∈ 𝐵𝐵𝑛𝑛  so that 𝑑𝑑 �𝑥𝑥𝑘𝑘𝑖𝑖 , 𝑥𝑥𝑘𝑘𝑗𝑗� < 2
𝑛𝑛

< ɛ if we 

choose  𝑎𝑎 > 2
ɛ
. 

 

Conversely, let 𝐴𝐴 be a subset of a metric space (𝑋𝑋, 𝑑𝑑)and every 
sequence in 𝐴𝐴has a Cauchy subsequence. We show that 𝐴𝐴 is totally 
bounded. 

If possible let 𝑨𝑨 is not totally bounded. Then for some  ɛ > 0 , 𝐴𝐴 has 
no finite ɛ − 𝑎𝑎𝑒𝑒𝑡𝑡. If  𝑥𝑥1 ∈ 𝐴𝐴, there must be some 𝑥𝑥2 ∈ 𝐴𝐴 such that 
𝑑𝑑(𝑥𝑥1, 𝑥𝑥2) ≥ ɛ. Otherwise {𝑥𝑥1} would be a finite ɛ − 𝑎𝑎𝑒𝑒𝑡𝑡  in 𝐴𝐴. 
Similarly since {𝑥𝑥1, 𝑥𝑥2} cannot be an ɛ − 𝑎𝑎𝑒𝑒𝑡𝑡 in 𝑨𝑨, ∃ 𝑥𝑥3 ∈ 𝑨𝑨 such that 
𝑑𝑑(𝑥𝑥1, 𝑥𝑥3) ≥ ɛ  and  𝑑𝑑(𝑥𝑥3, 𝑥𝑥2) ≥ ɛ. Proceeding in this way we constrict 
a sequence {𝑥𝑥𝑛𝑛} of points of 𝐴𝐴 such that for 𝑑𝑑 ≠ 𝑎𝑎 𝑑𝑑(𝑥𝑥𝑚𝑚, 𝑥𝑥𝑛𝑛) ≥ ɛ. 

It is clear that this sequence cannot have a Cauchy subsequence. 
This is a contradiction to our assumption. Hence 𝑨𝑨 must be totally 
bounded∎ 

 

 Prove that a metric space (𝑿𝑿, 𝒅𝒅) is sequentially compact if and 
only if  it is complete and totally bounded. 

 

Proof:  Let (𝑋𝑋, 𝑑𝑑) be sequentially compact. Then every sequence {𝑥𝑥𝑛𝑛} 
of points of 𝑋𝑋 has a convergent subsequence in 𝑋𝑋 . Let �𝑥𝑥𝑛𝑛𝑘𝑘� be the 
convergent subsequence of  {𝑥𝑥𝑛𝑛} which converges to the point 𝑥𝑥 ∈
𝑋𝑋. Since every convergent sequence in a metric space is a Cauchy 
sequence, �𝑥𝑥𝑛𝑛𝑘𝑘� is a Cauchy subsequence of {𝑥𝑥𝑛𝑛}. Hence  every 
sequence in (𝑋𝑋, 𝑑𝑑) have a Cauchy subsequence.Then by Theorem 6.3 

(𝑋𝑋, 𝑑𝑑) is totally bounded. 
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Now we show that (𝑋𝑋, 𝑑𝑑)is complete. Let {𝑥𝑥𝑛𝑛} be a Cauchy sequence 
in 𝑋𝑋. Then for sequentially compactness {𝑥𝑥𝑛𝑛} has a convergent 
subsequence. By the result  “ A Cauchy sequence in a metric space 
(𝑋𝑋, 𝑑𝑑) is convergent if and only if it has a convergent subsequence”  
the given Cauchy sequence converges. This proves that (𝑋𝑋, 𝑑𝑑)is 
complete. 

 

Conversely, Let (𝑋𝑋, 𝑑𝑑) be complete and totally bounded and {𝑥𝑥𝑛𝑛} be 
a sequence in (𝑋𝑋, 𝑑𝑑). Then by Theorem 6.3  the sequence {𝑥𝑥𝑛𝑛}has a 
Cauchy subsequence �𝑥𝑥𝑛𝑛𝑘𝑘: 𝑎𝑎1 < 𝑎𝑎2 < ⋯ . �. As (𝑋𝑋, 𝑑𝑑)is complete, 
�𝑥𝑥𝑛𝑛𝑘𝑘�converges in 𝑋𝑋. Hence (𝑋𝑋, 𝑑𝑑) is totally bounded∎ 
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